nationalgrid

Baseline Document: Massachusetts & Rhode Island © 2014

This document is intended to serve as an aid to National Grid personnel and technical assistance providers in the development of reasonable base case assumptions as part of National Grid's large C&I incentive program for commercial new construction. The baseline descriptions reflect current minimum standards set by state building codes and other governing bodies as well as common practices in industry as determined by National Grid. All baseline descriptions must meet state building codes, and it should be noted that this document does not list all code requirements.

Eligible high-performance alternatives to baseline practices are presented as suggestions and may not be applicable to all installations. These recommendations are presented as aids in identifying potential design improvements and are developed based on National Grid's past experience. Other sources of suggested high efficiency design alternatives include the Massachusetts stretch code, IECC 2012, ASHRAE 90.1-2010, and the ASHRAE advanced energy design guide series for achieving 50% energy reduction in offices, schools, box retail buildings, and hospitals.

Refer to the IECC 2012 *Scope and Administration* section (C101) for what building types the energy code applies to.

Disclaimer: If the site has quantitative and documentated data that suggests a different baseline than what is described in this document, the customer-specific data should be used.

<u>Code Changeover Dates</u> Massachusetts - July 1, 2014 Rhode Island - October 1, 2013

Climate Zones

Massachusetts - 5A Rhode Island - 5A

Note: The IECC 2012 requires all buildings to comply with one of three additional efficiency package options: more efficient HVAC equipment, more efficient lighting systems, or renewable energy systems. The new section is intended to achieve additional energy efficiency in commercial buildings designed to meet the IECC 2012 while providing flexibility in how that energy efficiency is achieved. Details of these requirements are included in this document.

Please contact <u>ngrid.baseline@nationalgrid.com</u> with any questions regarding this document.

copyright © 2013 National Grid USA Service Company, Inc.

TABLE OF CONTENTS

Baseline Document: Massachusetts & Rhode Island 2014

2014 BASELINE DOCUMENT

Section	Page #
Additional Requirements	1
Building Requirements	1
Architectural	1
Opaque Assemblies	1
Window and Skylight Assemblies	1
Mechanical	1
Code Required Airside Attributes	1
Energy Management Systems	2
Airside Baseline Set by NGrid	2
Hydronic Systems Equipment & Controls	5
<u>Furnaces</u>	5
Boilers	5
Cooling Systems	6
Service Water	8
Electrical	9
Motors	9
Lighting	9
Market Characterizations	10
<u>Supermarkets</u>	10
Ice Rinks	11
Fresh Water Supply	12
Waste Water Treatment	12
Laboratories & Vivariums	13
Data Centers	14
Pools	15
Compressed Air	15
Cold Storage	17
Process	19
Process Cooling	19
Process Ventilation	19
Induction / Specialty Power Supply	19
Plastic Injection Molding Machines	20
Thermal Oxidizers	20
Process VFDs	20
Process Regeneration	20

Additional References

Baseline Document: Massachusetts & Rhode Island 2014

1. California Title 24: Building Energy Efficiency Program

2. Energy Efficiency Baselines for Data Centers: Statewide Customized New Construction and Customized Retrofit Incentive Programs (Integral Group, March 1, 2013)

3. Combined Heat and Power ("CHP") Program: Guidebook for Submitting CHP Applications for an Energy Efficiency Incentive in Massachusetts

4. Advanced Buildings Core Performance

5. National Grid Technical Assistance Guidance Document for Laboratories

6. National Grid Technical Assistance Guidance Document for Data Centers

Line		System	2014 Prog	gram Year
#	Div.	Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices
1	Additional Requirements	Building Requirements	As required by IECC 2012 C406, buildings shall comply with at least one of the following: 1. Efficient HVAC Performance in accordance with Section C406.2 2. Efficient Lighting System in accordance with Section C406.3 3. On-Site Supply of Renewable Energy in accordance with Section C406.4	Exceed requirements of IECC 2012 C406: 1. Comply with more than one option (or) 2. Exceed min HVAC or lighting requirements in C406 (or) 3. Exceed on-site renewable energy requirements in C406.4 *Note: National Grid cannot incentivize energy savings from renewable energy sources
2	ral	Opaque Assemblies	lightweight construction	Opaque wail assemblies with higher thermal resistance.
3	Architectu	Window and Skylight Assemblies	Performance per IECC 2012 Table 402.3	Window and skylight assembly U-values exceed code requirements (note that values for assemblies account for frame effects and are not the same as center-of-glass values provided by glass manufacturers)
4		Code Required Airside Attributes	Design ventilation rates meet requirements of IMC 2009 (Section 4)	Demand-controlled ventilation (DCV) controls when not required by code
5		Energy Recovery	Energy recovery as required by IECC 2012 403.2.6	More effective energy recovery systems (where not code required, higher heat recovery effectiveness than code)
6	anical	Economizer	Economizer required on all cooling systems ≥ 33 MBH Economizer per IECC 2012 403.3.1 (simple) and 403.4.1 (complex), assume comparative drybulb control with 70°F upper limit; based on ASHRAE 90.1 Table G3.1.2.6B	Economizer controls exceeding requirements of ASHRAE 90.1 2010 Table G3.1.2.6B (where not required by code, on cooling systems < 33 MBH, etc.)
7	Mech	VAV Systems	VFD on fans as required by IECC 2012 403.4.2: Individual VAV fans with motors ≥ 7.5 hp shall be driven by a mechanical or electric VFD	VFDs where not required by code
8			For complex multizone VAV systems, minimum turndown at terminal units as required by IECC 2012 403.4.5. Reduce supply air to each zone to: (1) 30% of max supply air OR (2) ≤ 300 CFM where max flow rate is < 10% of total fan system supply airflow rate OR (3) min ventilation rates in Chapter 4 of IMC (See exceptions)	Lower turndown limits to minimize reheat requirements and fan energy *Must maintain proper air distribution for space comfort requirements

Line	System 2014 Program Year		gram Year	
#	Div.	Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices
		Fan Power	Fan power at design conditions per IECC 2012 403.2.10.1 and	Lower fan motor horsepower requirements at design through
9			403.2.10.2 (see Tables C403.2.10.1(1) and C403.2.10.1(2))	reduced pressure and/or airflow and/or increased fan efficiency
		Air Filtration	Air filtration equipment meeting requirements in ASHRAE 62.1:	Filters with lower pressure drop
			Particulate matter filters or air cleaners having a MERV of ≥ 6 must	
			be provided upstream of all cooling colls or other devices with	
10			Meet fan nower limitation in ASHRAE 90 1 2010 Table 6 5 3 1 1A	
		Energy Management Systems	EMS points meet IECC 2012 code requirements:	Intelligent thermostats (Optimal start-stop)
			- Automatic setback controls (down to 55°F, up to 85°F, typ.)	Monitor points beyond code requirements
	_		- Temperature deadbands of at least 5°F	Demand controlled ventilation (where not required)
	nica		- Shutoff damper controls	Dual enthalpy controls (where not required)
11	char		- Individual zone heating and cooling controls	
	Med		- Automatic DAT reset	
	-		- Demand controlled Ventilation (maintain < 550 ppm, typ.)	
12		Airside Baseline Set by NGrid		
		Single-zone HVAC Systems	Zone size limited to one tenant space:	Facility-wide DDC system controlling all packaged units, equipment
			• Office: 25,000 ft ² (max)	with energy conservation strategies beyond basic code
13			Packaged equipment to be equipmed with full digital controls	BTLL optimization controls such as fan speed indeving compressor
			capable of IECC 2012 required sequences	varving, fan speed varving
				Dedicated outdoor air unit with zone-conditioning
1.4		Direct-Fired MUA Heater	Direct-fired unit	High-temperature direct-fired heater at ASHRAE min recommended
14				air change rate
		Complex HVAC Systems - Controls	Automatic controls to turn on/off main HVAC equipment based on	Facility-wide DDC system controlling all terminal units, energy
15			building occupancy and allow IECC 2012 required sequences	conservation strategies beyond basic code requirements

Line	Div	System	2014 Pro	gram Year
#	Div.	Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices
16		Office Space < 25,000 ft ²	Constant-volume supply, return, exhaust fans	Higher efficiency air-side systems allowing for less fan energy use
		Office Space ≥ 25,000 ft ²	VAV systems with VFDs on fans, 5,000 sqft max zone size	High-efficiency air-side system design allowing for lower fan energy and less reheat
17				Dedicated single-zone units for spaces having unique conditioning requirements that allow general air handling equipment to be shut down during unoccupied hours
18		Manufacturing and Warehouse	Reject process heat	Reclaim process heat with make-up air unit
19		Areas	Large single-zone constant-volume packaged units	VAV distribution and control systems
20		Hotels	Non-guest room areas served by constant volume systems	Higher efficiency air system such as VAV system
21			Guest rooms served by PTAC units with hydronic heat (fossil source) or PTHP units (electric and other) according to ASHRAE 90.1 2010 Table G3.1.1A	Higher efficiency air system
22	nical		Manual setback (programmable thermostats adjusted by staff) for unrented rooms	Occupancy-based setback controls during unrented periods
23	Mecha	Schools	Classrooms with central chilled water: fan coil units with hydronic heat (fossil)	EC motors in FCUs Valence units Chilled beams Underflow air
24			Classrooms with cooling but no chilled water system: PTAC units with hydronic heat (fossil) or PTHP units (electric)	Higher efficiency air system, i.e. energy recovery unit with fan coil units
25			Classrooms with no cooling: unit ventilators with hydronic heat (fossil)	Higher efficiency air system
26		VRF Systems	Air-source heat pumps with electric heat and/or gas backup heat (or) Water-source heat pumps (or) DX cooling with gas heating *Baseline cannot use PTAC or PTHP units	VRF system must provide both heating and cooling VRF system with high-performance outdoor compressor/condenser unit(s), must exceed minimum efficiency requirements in ASHRAE 90.1 2010 Table 6.8.1 Dedicated outdoor air system with energy recovery and VRF zone conditioning Indoor fan coil units with EC motors

Line	ie System 2014 Program Year			gram Year
#	Div.	Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices
27		Other Space Types	Other space types (except manu/storage areas): single zones smaller than 5,000 sqft served by constant volume units, or VAV or multizone with zone size ≤ 5,000 sqft	Higher efficiency air system
28	-	Parking Garages	Enclosed parking garage ventilation systems shall automatically detect contamination levels and stage fans or modulate fan airflow rates to 50% or less of design capacity provided acceptable contaminant levels are maintained (see exceptions: ASHRAE 90.1 2010 6.4.3.4.5)	
29		Kitchen Hood Exhaust Systems	Systems ≤ 5,000 cfm: constant volume with automatic on/off control and no dedicated makeup unless required by IMC 2009 501.3 or NFPA-96 2008 Section 8.3	Systems ≤ 5,000 cfm: VFD on exhaust fan with sensor-based velocity controls, dedicated makeup air (no mech cooling, heat only to 60°F)
30	Mechanical		Systems > 5,000 cfm: Each hood has an exhaust rate complying with Table 6.5.7.1.3. Have one of the following: (1) \geq 50% of all replacement air is transfer air, (2) DCV on \geq 75% of exhaust air, or (3) energy recovery with \geq 40% effectiveness on \geq 50% of total exhaust airflow (according to ASHRAE 90.1 2010 6.5.7.1)	Systems > 5,000 cfm: hood exhaust system complying with more than 1 option in ASHRAE 90.1 Table 6.5.7.1.3
31		Fume Hood Exhaust Systems	Systems ≤ 5,000 cfm: constant volume exhaust with constant volume supply/makeup air systems	Automatically controlled exhaust volume based on sash position or occupancy; VFD on exhaust fans
32				Sensible heat recovery
33			 Systems > 5,000 cfm must include at least one of the following: (1) VAV system capable of reducing exhaust and makeup flow rates and/or incorporate energy recovery should meet equation in 6.5.7.2 (2) Zones capable of reducing flow rates by 50% of design rates, or min to maintain pressure requirements (3) Makeup air supply ≥ 75% of exhaust flow rate, heated ≤ 2F below room setpoint, cooled ≤ 3F above setpoint, no humidification added, and no simultaneous H/C (ASHRAE 90.1 2010 6.5.7.2) 	Exceed requirements of ASHRAE 90.1 2010 6.5.7.2

Line		System	2014 Pro	gram Year
#	Div.	Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices
34		Airside energy recovery (not code required)	No energy recovery if not code-required	Energy recovery with at least 50% sensible effectiveness
35		Operable Windows		Window interlock controls with HVAC system
		Hydronic Systems Equipment & Controls	VFDs on hydronic pumps per IECC 2012 403.4.3.4	VFDs on pumps where not required (e.g. systems with temperature
36			(systems \geq 300 MBH in design output capacity supplying heated or	reset)
			chilled water to comfort conditioning systems)	
37			Hydronic pipe insulation meeting minimum thickness in IECC 2012 Table 403.2.8	
38		Furnaces	Warm air furnace with performance meeting IECC Table C403.2.3(4)	Furnace with performance exceeding IECC Table C403.2.3(4)
39		Boilers		
40	Mechanical	Selection	Hot water - non-condensing boilers with performance meeting IECC 2012 Table C403.2.3(5)	Non-condensing boilers with performance exceeding IECC 2012 Table C403.2.3(5) Modulating condensing boilers with return water temperature reset controls (temp. must be within condensing range)
41			Steam plants - boilers with performance meeting IECC 2012 Table C403.2.3(5)	Boiler economizers
42		Burner controls	Boilers with burner sizes not governed by code have non- modulating controls	Modulating burners on boilers < 500,000 Btu/hr capacity
43			Constant-speed forced-draft burner fans having inlet guide vane or outlet damper volume control	VFD on forced-draft burner fans
44			Mechanical linkage control	Parallel positioning controls with oxygen trim
45		Boiler pumps	> 10 hp: VFD boiler feed water pumps having automatic modulating valve makeup water control	VFDs on all boiler feed water pumps with automatic pressure controls
46		Boiler controls		Predictive cycling control to limit boiler cycling Heat recovery in steam plants

Line		System	2014 Prog	gram Year
#	Div.	Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices
47		Cooling Systems		
		Heat Pumps: Air Source	Air-source heat pumps for cooling, hydronic heat source for	Water-loop (including groundwater loop) heat pumps with
48			supplemental heating where needed (performance meeting IECC 2012 Table C403.2.3(2)	performance exceeding IECC 2012 Table C403.2.3(2)
49		Ground-source Heat Pumps	Ground-source heat pumps with performance meeting IECC 2012 Table C403.2.3(2)	Higher efficiency heat pumps
50		Heat Pumps: Standard Water Loop	Standard loop temperature controls per IECC 2012 403.4.3.3	Controls that optimize loop temperature based upon real-time conditions and loads
51		Unitary Air Conditioners (RTUs, etc)	Air cooled, standard efficiency packaged unit with DX cooling with performance meeting IECC 2012 Table C403.2.3(1)	High-efficiency cooling systems, high-efficiency fan selection
52	nical		Minimum refrigerant saturated condensing temperature of 95°F for air-cooled systems and 70°F for water-cooled and evaporatively cooled systems	Minimum SCWT lower than baseline requirement
53	lechai		Use heating system for reheat at unit	Run-around heat pipes or hot gas reheat to minimize reheat requirements from other sources
54	2	Split Systems	Air cooled systems with performance meeting IECC 2012 Table C403.2.3(1)	High-efficiency systems
55			Minimum refrigerant saturated condensing temperature of 95°F for air-cooled systems and 70°F for water-cooled and evaporatively cooled systems	Minimum SCT lower than baseline requirement
56		Chilled Water Plants	(design CHWT >35°F)	
		Equipment Selection	< 250 tons = air-cooled chiller	Air-cooled chiller with integrated dry cooler or water-cooled chiller
			≥ 250 tons = water-cooled chiller	with water-side economizer
57			*Chiller performance must meet minimum requirements in IECC 2012 403.2.3	*Performance exceeding requirements in IECC 2012 403.2.3
			Systems ≥ 250 tons, if winter cooling required (hospitals/labs, etc),	
58			chiller must have water-side economizer or automatic switchover to	
			separate system	

Line	Div	System	2014 Program Year		
#	DIV.	Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices	
59		Chiller Sequencing	If multiple chillers are present, assume they would be manually staged based on load	Optimal automatic chiller sequencing based on total plant efficiency	
60		Pumping	Constant-flow chillers with primary/secondary pumping system; VFDs on secondary pumps per code requirements	Variable-flow chiller system with VFD on primary pumps	
61			CHW pumps serving variable-flow systems > 5 hp must have VFDs	CHW pumps ≤ 5 hp with VFDs	
62		<u>Chilled Water Temperature</u>	Systems ≥ 25 tons must: (1) automatically reset supply water temperature by ≥ 25% of design supply-to-return water temperature difference OR (2) reduce pump flow by at least 50% of design flow rate based on load (IECC 2012 403.4.3.4)	Exceed requirements of IECC 2012 403.4.3.4	
63	chanical		Standard 10°F chilled water system differential	Higher temperature differential, increased savings with oversized pipes (consider chiller performance and fan energy penalties)	
64	Me	<u>Piping</u>	Chilled water piping sizing according to ASHRAE 90.1 2010 Table 6.5.4.5		
65		<u>Cooling Towers</u>	Induced draft cooling towers having a nominal motor size ≥38.2 gpm/hp at 95°F/85°F/75°F wb (ASHRAE 90.1-2010 Table 6.8.1G)	Oversize cooling tower box, downsize fan motor	
66			Induced-draft cooling tower with centrifugal fan having a nominal motor size ≥ 20 gpm/hp at 95°F/85°F/75°F wb (ASHRAE 90.1-2010 Table 6.8.1G). Fans ≥7.5 hp must have 2-speed motor with automatic controls	VFD for cooling tower	
67			CT fan speed control per code requirements, minimize number of operating fans (ASHRAE section 6.5.5.2). Fans ≥7.5 hp shall have capability to operate at 2/3 speed or less with automatic controls	VFDs on all cooling towers, maximize number of operating tower fans	

Line	ne System 2014 Program Year		gram Year	
#		Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices
		Differential Pressure	Differential pressure setpoint should be no more than 110% of that	
68			90.1 2010 6.5.4)	
		Condenser Water Temperature	Constant condenser water (CW) temperature setpoint of 70°F (per	Reset CW temperature setpoint based upon outside air wetbulb
69			ASHRAE 90.1-2010 G3.1.3.11)	temperature down to minimum acceptable by chiller manufacturer
05				and site operators; maintain an offset to ambient wetbulb (e.g. 7°F)
70		Water-side Economizer	No water-side economizer (if not required by IECC 2012 403.4.1)	Plate and frame heat exchanger for free winter cooling/water-side economizer
			Manually activated switchover to free cooling operation; automated	Automatic switchover into and out of free cooling based on ambient
71	ical		isolation valves on cooling towers, chillers, and heat exchangers	wetbulb, chilled water load, and cooling tower capacity
72	hani	Thermal Storage	No thermal storage	Thermal storage to reduce plant peak kW demand (consider energy
	Vec			penalty on overall plant energy use)
73		Service Water		
74		Equipment Selection	Must meet minimum efficiency requirements in IECC 2012 Table 404.2	Exceed requirements of IECC 2012 Table 404.2
		Heat Recovery	Condenser heat recovery for heating or reheating of service hot	Heat recovery where not code-required
			water provided the facility operates 24 hr/day, total heat capacity	
			exceeds 6,000 MBH of heat rejection, and design service water load	
75			exceeds 1,000 MBH	
			Heat recovery system must provide the smaller of:	
			1. 60% of peak heat rejection load at design conditions	
			2. Preneating required to raise peak not water draw to 85 F	
			(IECC 2012 Section C403.4.6)	

Line	Div	System	2014 Prog	gram Year
#	Div.	Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices
76		Motors		
77		Selection	AC 3-phase, 60-Hz motors 1 hp and larger: NEMA premium	Advanced technology motors: permanent magnet, all copper rotor
<i>``</i>			efficiency motors	motors
78			Motors < 1 hp: PSC motors	Motors < 1 hp: Electronically commutated (EC) motors
79		Power transmission	Belt drive transmission system	Synchronous power transmission
80		Lighting		
81		IECC 2012 Compliance	<i>Note: If New Construction project decides to comply with IECC 2012 4</i> <i>C406.3</i>	106.3 Lighting Performance, must meet minimum LPD in Table
		High Bay Lighting	High bay lighting systems with no controls, must meet IECC 2009	Higher performance LED fixtures with integral lighting controls,
82		(ceiling >20')	LPD (RI. IECC 2012 after Jan. 2014, MA. IECC 2012 after Jan. 2015)	lighting redesign and lighting commissioning
83	al	Standard Interior Lighting (ceiling	Lighting system design must meet IECC 2009 LPD (RI IECC 2012 after	Higher performance LED fixtures with network lighting controls,
00	tric	<20')	Jan. 2014, MA IECC 2012 after Jan. 2015)	lighting redesign and lighting commissioning
84	lec	Lighting Controls	Comply with IECC 2012 405.2.1 automatic lighting shutoff	Occupancy sensors and other automatic controls where not
			Comply with ASHRAE 90.1-2010 9.4.1 space control, including occ	required
85			sensors in classrooms (see exceptions), conference/meeting rooms,	
			and lunch/break rooms	
86			Bi-level switching as required by IECC 2012 405.2.2.1	Bi-level switching where not required
87			Daylighting dimming controls in accordance with IECC 2012 C405.2.2.3	Daylight dimming controls where not required
88		Exterior Lighting	Lighting power densities per IECC 2012 Tables 405.6.2(1) and (2)	High efficiency design incorporating LED fixtures
80			HID technology	Higher efficiency fixtures or system designs providing equivalent
69				light levels and improved controllability
00			Timeclock and/or photocell controls	Automatic high/low controls (for loading docks or areas with
90				variable occupancy; no manual override ON option)

Commercial New Construction Baseline Descriptions Massachusetts and Rhode Island

Line	Div	System	2014 Pro	gram Year
#	Div.	Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices
91		Supermarkets		
92		Compressors	Reciprocating compressors	Scroll compressors
93			Capacity control through staging and unloading	VFDs for capacity control
94			Fixed head pressure controls with a minimum refrigerant SCT setpoint of 95°F	Lower refrigerant SCT setpoint acceptable by compressor manufacturer and site operators
95	tions	Evaporator Fan Motors	Motors <1 hp & <460 V: EC or 3-phase motors for evaporator fans Motors ≥1 hp: Comply motor requirements section	Motors ≥1 hp: EC or 3-phase motors for evaporator fans
96	iza	Condensers	Air-cooled condensers	Evaporative condensers
97	cter		Mechanical thermal expansion valves	Electronic thermal expansion valves
98	arao	Lighting	T8/T5 case lighting with electronic ballasts	LED lighting
99	Châ	Cases	Case doors with anti-sweat heat controls	Low-heat/no-heat doors
100	(et		Strip curtains for isolation of refrigerated rooms	Gasketed manually operated isolation doors
101	lar		No night curtains	Night curtains on reach-in coolers and freezers
102	2		Timed electric resistance defrost	More efficient defrost technology and/or controls
103		Dehumidification	Spaces served by HVAC units providing humidity control with	Heat pipe on HVAC unit with coil bypass for reheat
104			reheat; unit performance meets requirements described above for unitary air conditioners	Refrigeration waste heat recovery for water heating (domestic or hydronic)
105			DX-type dehumidification with hot gas reheat	Desiccant dehumidification with heat recovery from refrigeration system for regeneration requiring no supplemental regeneration heat source

Line		System	2014 Pro	gram Year
#		Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices
106		Ice Rinks		
107		Brine System	Water-cooled or evaporatively cooled brine chiller system, minimum 85°F SCT	Reset condenser water/condensing temperature setpoint based upon outside air wetbulb temperature down to minimum
				acceptable by chiller manufacturer and site operators
108]		Condenser capacity equal to proposed installation	Oversized condenser(s)
109			Chiller performance for actual unit selection (same capacity as proposed unit, 10°F evaporator approach, 85°F min SCT)	
110			Standard brine system DX evaporators	Balanced Port DX valves or flooded evaporators to allow increased suction temp and reduced discharge pressure
111		Heat Rejection	Heat rejection through the condenser	Use condenser heat for snow melt system, sub-slab heating, or dehumidification unit
112	ous	Refrigerant	Ammonia-based refrigeration system	CO2-based refrigeration system
113	acterizati	Temperature Controls	Slab-mounted ice temperature sensor that allows brine pump to cycle on and off	Infrared ice temperature sensor (more accurate ice surface temperature readings over slab-mounted sensors)
114	t Char		Constant ice temperature setpoint	Ice temperature reset sequence based on scheduled occupancy and use
115	Irke		Non-electric resistance sub-slab frost control	
116	Ma	Pumps	Brine pump cycles on and off with compressors	VFD on brine pump operating to maintain a fixed temperature rise across evaporator heat exchanger
117		Enclosure	Low-emissivity ceiling	
118		Dehumidification	Dehumidification technology capable of maintaining equivalent space dewpoint to proposed case technology (30°F dewpoint, -10°F dewpoint with gas-fired desiccant system)	Use waste heat for re-heat or desiccant regeneration
119		Lighting	HID lighting with zone/scene control capability	Zone/scene control with high bay fluorescent, high performance metal halide, LED
120		Space Heating	Gas-fired radiant heaters above bleachers for occupant comfort; space temperatures lower than 50°F	
121		Domestic Hot Water		Reuse compressor/condenser heat for DHW and/or Zamboni ice resurfacing

Line		System	2014 Program Year		
#		Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices	
122		Fresh Water Supply	VFDs on all pumps ≥ 5 hp requiring variable flow for process control	VFDs on pumps ≤ 3 hp	
122			or flow matching		
123			Refrigerated dehumidifiers	Desiccant-based dehumidification	
124			Throttled well pump for constant pressure or flow control	VFDs on well pumps	
		Waste Water Treatment	Aeration and other treatment systems in keeping with current best-		
125			practices as defined in the New England Interstate Water Pollution		
125			Control Commission's TR-16 guideline		
126	ions		Constant speed odor control and sludge aeration systems	Variable airflow controls including VFDs on fans and blowers	
107	zati		VFDs on all pumps ≥5 hp requiring variable flow for process control	VFDs on pumps ≤3-hp	
127	teri		or flow matching		
	ract		Small systems (< 5 MGD): positive displacement blowers	Small systems (< 5 MGD): Centrifugal blowers, low-pressure screw	
128	Cha			compressors, motor operated valve (MOV) pressure control	
	ket				
129	Jarl		Large systems (> 5 MGD): Turbo blowers	Large systems (> 5 MGD): Single-vane blowers, low-pressure screw	
125	2			compressors, MOV pressure control	
			Dissolved oxygen (DO) sensors in each aeration basin	Dual loop control where DO is used for air distribution to the tanks	
130				and maintenance of pressure setpoint in the air header determines	
				blower output	
121			Use aeration air to maintain suspension of solids in mix-limited	Mechanical agitators to maintain solids suspension when BOD	
151			designs	loading would allow blowers to be set back	
132			Gravity belt waste sludge thickeners		
122			Centrifuge sludge dewatering (limited to cases where centrifuge	Screw press sludge dewatering	
122			technology is appropriate)		

Commercial New Construction Baseline Descriptions Massachusetts and Rhode Island

Line		System	2014 Program Year		
#	Div.	Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices	
134		Laboratories & Vivariums			
135		Reheat System	55°F constant supply air temperature	Supply air temperature reset controls	
		Equipment Load	When the design equipment load density is known, the baseline		
			load is set equal to the design load density.		
136			If new equipment load is unknown, assume 5 W/sqft during		
			occupied hours and 3 W/saft during unoccupied hours		
		Heat Source	Shared with heating hot water system for air handler heating coils.		
137			Non-condensing, natural gas-fired boilers provide heating energy		
138		Supply Air System	100% outside air flow and do not transfer air from offices or other		
100			non-lab spaces		
139		General Exhaust Airflow	Minimum zone exhaust airflow defined by the customer's company		
135			standards. If undefined the baseline is 10 ACH		
140			Maintain constant exhaust stack flow rate with variable room	Variable exhaust stack flow rate	
140			exhaust via bypass air at the stack		
1.1.1	S		Maintain constant airflow during occupied and unoccupied hours	Reduce airflow during unoccupied hours	
141	ion				
	zat		Constant zone supply and exhaust flow rates	Active ventilation control: vary zone supply & exhaust flow rates	
142	teri			based on fume sensing, time clock, or active occupancy sensors	
	rac				
143	Cha	Cooling System			
	et (<u>≤360 tons cooling cap</u>	100% outside air DX packaged units with air-cooled condensers		
144	ark				
1 4 5	Σ	>360 tons cooling cap	Hydronic system with CHW coils in a 100% outside air handler		
145			served by water-cooled chillers		
146		Heating System			
147		<u>≤360 tons cooling cap</u>	100% outside air DX packaged units with gas-fired furnace		
		>360 tons cooling cap	Hydronic system with HHW coils in a 100% outside air handler		
148			served by non-condensing natural gas-fired boilers		
149		Heat Recovery			
150		Variable Volume System	Not req. if supply & exhaust systems reduce airflow by $\geq 50\%$	Heat recovery between the exhaust and supply airflow streams in	
				addition to minimum 50% turndown	
151		Constant Volume System	Heat recovery (IECC C403.2.6)		
		Fume Hood Control	Constant 100 tpm tace velocity (Hood dimensions should match		
152			proposed design. If no data is available, assume hood height of 18")		
153			VAV hoods with manually-controlled single sash	Timeclock reduction of face velocity or automatic sashes	
154		Other Exhausted Equipment	Exhaust is set to middle of manufacturer recommendation for all lab		
104			equipment, excluding hoods		

Commercial New Construction Baseline Descriptions Massachusetts and Rhode Island

Line		System	2014 Program Year		
#	DIV.	Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices	
155		Data Centers			
156		Space Load Estimates	IT rack consumption is primary load, shell and lighting loads are deer	ned negligible	
157			Waste fan power is calculated based on operating BHP, motor efficie	ency, and typical power factor assumptions	
158			IT load assumed to be constant and independent of OA conditions, g	rowing only as equipment is added over time	
150			After 1-2 years the space will be operating at 50% of the non-redund	ant limiting capacity	
129			Typically the UPS is the limiting capacity but sometimes the installed	cooling is the limiting capacity	
		Uninterruptible Power Supply (UPS)	Double-conversion, battery-based, non-switching UPS units with	Efficiency exceeding baseline values	
160			capacity above 10kVA. Baseline efficiency depends on UPS unit size	(Off-line UPS, Line-interactive UPS)	
			according to table (see attachment)		
		Aisle Configuration	Hot aisle/cold aisle configuration with open aisles up to 100 W/sqft,		
161		-	ducted return 100-200 W/sqft and fully enclosed hot aisle/cold aisle		
			beyond 220 W/sqft		
1.60		Operating Airflow Management &	Baseline operating conditions vary according to load density table		
162	suc	Air Conditions	(see attachment)		
163	atic	Supply Air Setpoint	64 - 67°F, depending on installed IT capacity		
164	eriz	Airside Temp Difference	10 - 18°F depending on installed IT capacity		
165	acte	Supply Fan System Efficiency	1,482 - 1,536 cfm/kW, depending on installed IT capacity		
	har	Humidification	When humidification is required, electric resistance humidifier with	Ultrasonic/evaporative humidification	
166	it Cl		100% efficiency (e.g. infrared lamps)		
167	ırke	Reheat	No reheat	Reheat equipment in the CRAH/C unit	
168	Ba	CRAH/C Unit Fan Operation			
1.00		Low-Density (<10 kW/rack)	Minimum fan airflow and efficiency (CFM/kW) defined by table (see	Fan airflow efficiency exceeds minimum in table	
169			attachment)		
170		High-Density (10-30 kW/rack)	In-row cooling		
171		Cooling System Type			
172		<u>IT Load < 1 MW</u>	DX refrigerant loop with remote, air-cooled condensers	DX refrigerant loop with remote, water-cooled condensers	
1/2					
173		<u>IT Load ≥ 1 MW</u>	Water-cooled chillers, variable flow, primary-only chilled water loop		
174		CRAH/C Unit Compressor Efficiency	Baseline efficiency values are defined based on size (see table)	Efficiency values exceeding baseline values	
		Free cooling / Feerenciner	No free cooling or economizer	Watarsida ar airsida aconomizar ar free cooling (will become	
175		Free-cooling / cconomizer		hasoling with adoption of ASHRAE 00.1.2012)	
176				Cross connect to control chilled water plant	
110				Cross-connect to central chined water pidfit	

Line		System	2014 Program Year		
#	Div.	Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices	
177 178		<i>Pools</i> Dehumidification	Maintain minimum ventilation rate of 0.48 CFM/SF of deck and pool area per ASHRAE 62.1 Mechanical (heat pump) dehumidification with built-in economizer	Energy recovery to the supply airstream or the pool water Variable speed drives for compressor capacity control	
179		Cover	Vapor-retardant cover		
180		Pumps	Constant-speed pool water circulation pumps	VFD pool water circulation pumps	
181		Controls	Readily accessible on/off heater switch, automatic time switches		
182	suo	Compressed Air			
183	erizatio	Uses	Used for blow off, air knives, diaphragm pumps, pumps, conveyance systems, venturi vacuum systems, etc	Electrically driven alternatives and low-pressure blowers	
184	rket Charact	Air compressors - Oil Flooded	General manufacturing systems < 130 psi or < 200 HP oil flooded single stage compressors with modulating control via inlet valve and unloading point below 50% of rated CFM	Load/No load compressors with storage > 4 gal/CFM of compressor capacity, variable displacement compressors, VFD compressors, two stage oil flooded compressors with load/no load control and storage	
185	Ma		General manufacturing systems >130 psi or > 200 HP two stage oil flooded compressors	Load/No load compressors with storage > 4 gal/CFM of compressor capacity, variable displacement compressors, VFD compressors, two stage oil flooded compressors with load/no load control and storage	
186		Air compressors - Oil Free	Medical, pharmaceutical, food processing and other specialty manufacturing facilities where oil free air is required. Oil free air with single stage compression and load/no load control	Multi stage compression w/ VSD control, and storage >4 gal/CFM of compressor capacity, centrifugal compressors for larger base load combined w/ rotary screw oil free unit	
187		Compressor Staging	No sequencers or automation controls	Optimize compressor utilization by incorporating sequencers &/or automation controllers	

Line	Div	System	2014 Program Year		
#		Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices	
100		Air Dryers	For facilities requiring pressure dew point of ≥ 35°F - refrigerated	Cycling thermal mass or variable speed dryers	
100			non-cycling dryers		
190			For facilities requiring pressure dew point of < 35°F - desiccant	Incorporate desiccant dryers with dew point sensing controls to	
169			dryers	reduce regeneration frequency	
			Desiccant dryers for ≤ 35°F dew point requirements	Incorporate piping changes to separate low dew point air demand	
190				from ≥35°F to achieve higher overall system efficiency with use of	
190				appropriately sized combination of desiccant & refrigerant cycling or	
				VFD dryer	
191			Oil free application - Refrigerant or Desiccant Dryer	Heat of compression dryer when packaged w/ new compressor	
101					
		Air Filtration	Standard design air filtration exceeding 3 psi pressure drop	Low pressure drop filters with pressure drop at rated flow ≤1 psi	
	su			and \leq 3 psi at filter element change, particulate filtration is 100% at \geq	
192	tio			3.0 microns, 99.98% at 0.1 - 3.0 microns, ≤5 ppm liquid carryover,	
	riza			filter is deep bed, "mist eliminator style"	
	cte				
193	ara	Condensate Drains	Timed or continuous air bleed type	Zero loss condensate drains	
194	ch	Air Distribution Piping	Pipe sizing resulting in air velocity ≥45 fps	Increase pipe sizing to accommodate 20-30 fps at full flow per	
131	ket			Compressed Air Challenge (CAC) recommendations	
	Лаг	Demand side measures	No pressure / flow controls, no leak management	Incorporate pressure/flow control with pressure reduction for end	
195	~			uses, reduce artificial demand and implement demand side	
				improvements to reduce leakage	
196			Blowing through open pipe with compressed air	Low pressure blower and engineered air nozzle	
197			Sparging and agitation of process tanks with compressed air	Low pressure blower and appropriately placed air piping with	
				nozzles	
198			Cabinet cooling with venturi compressed air nozzles	Properly sized electric cabinet air conditioner	
199	-		Venturi vacuum systems	Electric Vacuum Systems	
			Short cycling high pressure air pulsing of dust collectors	Provide secondary local storage for high pressure pulsing	
200				application with refill valving to isolate intermittent high pressure	
				demand from rest of plant	
201			Compressed air actuators in facility	Replace with electro-mechanical actuators	
202			Compressed air motors	Replace with electric motors	

Line		System	2014 Program Year		
#	Div.	Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices	
203		Cold Storage			
204		< 50,000 ft²	Split-circuit system (air units connected with close-coupled air- cooled compressor unit)	Central refrigeration system	
			For roof-mounted split system installations serving walk-in storage	Temperature-controlled evaporator fan operation	
205			units, standard controls and equipment performance; timeclock	Timeclock defrost with temperature sensor shutoff	
203			initiated electric defrost and timed shutoff	Hot gas defrost	
			Performance for actual unit selection (same capacity as proposed	Exceed baseline performance requirements of cooling equipment	
206			unit, 10°F evaporator approach, 95°F min SCT); assume 1% change		
200	tions		in performance for each 1°F change in SST		
	riza	\geq 50.000 ft ² & < 200.000 ft ²	Halocarbon split-circuit system (air units connected with close-	Central refrigeration system	
207	acte	, , ,	coupled air-cooled compressor unit)	*"Medium" cold storage is on the line between central and	
	Jara			halocarbon systems	
208	it Cl	≥ 200,000 ft ²	Central refrigeration system	Heat recovery from compression	
200	ırke	Evaporators	Evaporators selected for a 10°F approach to design space		
203	Ma		temperatures		
			Standard size evaporator coils and constant operation of evaporator	Over-size evaporator coils with lower fan HP	
210			fans	Temperature-controlled evaporator fan operation	
				VFD evaporator fan operation	
211		Compressors	Compressor capacity equal to proposed installation		
212			Single-stage compressor system for SST ≥-10°F	Two-stage compressor system for SST ≥ -10°F	
			(two-stage for suction temperatures below -10°F)		
			Performance for an actual baseline unit selection (same capacity as	Compressor performance exceeding baseline performance at full	
213			proposed unit, 10°F evaporator approach, 85°F SCT/CW)	load, listed SST, and 85°F SCT/CW	

Line		System	2014 Program Year		
#	Div.	Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices	
		Controls	Cooling loads handled throughout typical day	Thermal load shifting capability by automatic space temperature	
214				reset (note this may not save energy but can impact coincident peak	
				demand)	
			Evaporatively cooled (85°F min SCT) or water-cooled (75°F min CW)	Reset condenser water/condensing temperature setpoint based	
215	SL		systems	upon outside air wetbulb temperature down to minimum	
215	tior			acceptable by chiller manufacturer and site operators	
	'iza'				
	cter		Electric defrost engaged based on timeclock with the following	Hot gas defrost with evaporator run time initiated defrost and timed	
216	arao		typical heating element run times: -10°F, 2 times per day, 15	activation period or run time limited by infrared/temperature	
	ch		minutes	sensors on evaporator coil	
217	(et		Non-electric resistance sub-slab frost control		
218	lar	Seals	Manually operated motorized isolation doors OR strip doors with	High-speed automatic isolation doors	
219	2		non-motorized doors		
220			Full seals around loading dock doors to mate with vehicles	High performance dock sealing system	
220					
221		Lighting	Metal halide lights in refrigerated box trucks	LED lighting	
222			HID lighting	LED with integral occupancy sensors	

Line	Div	System	2014 Program Year		
#	Div.	Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices	
223		Process Cooling			
224		Equipment Selection	Cooling capacity < 250 tons = air-cooled chiller	High-performance water-cooled chiller with water-side economizer	
224			Cooling capacity ≥ 250 tons = water-cooled chiller		
225			Free-cooling if cooling required during winter months		
226		Applications	Year-round mechanical cooling for process cooling water colder	Fluid coolers with automatic switchover/isolation valves to limit	
220			than 84°F	central plant chilled water use	
			Cooling towers used for heat rejection for process cooling	Water-side plate and frame heat exchanger if cooling tower is	
227			temperatures 85°F or warmer	available: process water bypasses chiller, all cooling is done with the	
227				cooling tower, compressor is shut down	
228		Controls	Manually adjusted isolation valves and dampers on process water,	Interlocked controls to automatically isolate equipment when it is	
	S		air, and exhaust systems	turned off	
	ces	Process Ventilation	Design must be in compliance with local and federal health and	Demand-based ventilation to reduce ventilation rates during periods	
229	Pro		safety code requirements, such as: NFPA, OSHA, EPA, IMC	of reduced occupancy or load	
				*Must meet health and safety requirements	
230			VFDs on fans, blowers, or pumps serving variable loads having	VFDs with automatic controls on variable-load equipment having	
			motors ≥25 hp	motors ≤20 hp, 2-way valves on end uses	
			VFDs on motors requiring variable speed (e.g. no mechanical speed		
231			controls unless standard industry practice)		
232			Manually adjusted isolation valves and dampers on process water,	Interlocked controls to automatically isolate equipment when it is	
			air, and exhaust systems	turned off	
		Induction / Speciality Power Supply	Solid-state frequency converter making constant off-frequency (i.e.	Interlocked controls to automatically turn off power source when	
233			furnaças) manually turnad off during non-production shifts	production equipment is turned on	
			interaces), manually turned on during non-production shifts		

Line	Div	System	2014 Program Year	
#		Sub-Category	Baseline Efficiency Minimum Standards & Practice	Potential High-Performance Practices
234	4 Plastic Injection Molding Machines			
235		Tonnage < 500 tons	Hybrid Injection Molding Machine	All-electric Injection Molding Machine
236		Tonnage ≥ 500 tons	Hydraulic Injection Molding Machine	All-electric Injection Molding Machine
237	Controls Thermal Oxidizers			VFD or variable flow pumps
238				Stack molds
239				Nitrogen accumulators
240				
2/1	ces	Low Flow: < 10,000 CFM	70% Efficient Recuperative	Regenerative and/or heat recovery, i.e. for space heating
241	Pro			(>70% efficient)
2/12	-	Medium Flow: 10,000 to 30,000 CFM	70% Efficient Recuperative	Regenerative and/or heat recovery, i.e. for space heating
242				(>70% efficient)
243		Large Flow: > 30,000 CFM	70% Efficient Recuperative or Regenerative (whichever is lower cost)	Regenerative and/or heat recovery, i.e. for space heating
<u> </u>		Process VFDs	No variable frequency drive control of process pumps or fans	Variable frequency drives on process pumps or fans
244				*VFD must not be used for balancing
245		Process Regeneration	No process regeneration	Process regeneration

Data Centers

Uninterruptible Power Supply (UPS)

UPS Size	% Load				
(kVA)	25%	50%	75%	100%	
< 20	86.3%	86.3%	90.1%	90.2%	
≥ 20 and ≤ 100	88.5%	88.5%	91.3%	91.9%	
> 100	89.8%	89.8%	93.5%	93.8%	

Source: Integral Group

*Values in table represent averages of published data from UPS manufacturers and from data used in EPA's Energy Star performance criteria.

Operating Airflow Management and Air Conditions

IT Load	Airflow Management	Return Air Temp	Supply Air Temp	Operating Airside	Relative Humidity
Density (W/sqft)	Practice	Setpoint (F)	Setpoint (F)	Temp Difference (F)	Range
0-100	Open	74	64	10	40-60%
101-220	Ducted Return	78	65	13	40-60%
221-400	Fully Enclosed	85	67	18	40-60%

*All levels assume that the server racks are oriented in hot aisle/cold aisle configuration.

CRAH/C Fan Operation

IT Load Density	Fan Airflow Efficiency	CRAH/C Airflow
(W/sqft)	(CFM/kW)	Capacity (CFM)
0-100	1,536	16,800
101-220	1,508	15,800
221-400	1,482	13,875

*For high-density datacenters, defined as 10-30 kW/rack, the baseline system type is an in-row cooling solution

Cooling System Type

Design IT Load Size:	< 1 MW	≥1 MW
Cooling Plant	Direct-expansion refrigerant loop with remote, air-cooled condensers	Water-cooled chillers, variable flow, primary-only chilled water loop
Distribution System	Computer room air conditioners (CRACs with constant speed fans)	Chilled water computer room air handlers (CRAHs) with constant fan speed

*Source: typical practice from market surveys and field observations.

CRAC Compressor Efficiency

Nominal Cooling Capacity		Nominal Efficiency*	
kBtu/h	Tons	EER	kW/ton
< 65	< 5.42	11	1.09
65 to < 135	5.42 to < 11.25	11.2	1.07
135 to < 240	11.25 to < 20	11	1.09
240 to < 760	20 to < 63.3	10	1.2
760+	63.3+	9.7	1.24

*At ARI test conditions, efficiency values include supply and condenser fan power. Source: Integral Group